The KSampler node performs multi-step denoising sampling on latent images. It combines positive and negative conditions (prompts) and uses specified sampling algorithms and schedulers to generate high-quality latent images. It is commonly used in AI image generation workflows like text-to-image and image-to-image.

Parameter Description

Input Parameters

ParameterTypeRequiredDefaultDescription
modelMODELYesNoneModel used for denoising (e.g. Stable Diffusion model)
seedINTYes0Random seed to ensure reproducible results
stepsINTYes20Number of denoising steps - more steps mean finer details but slower generation
cfgFLOATYes8.0Classifier-Free Guidance scale - higher values better match prompts but too high impacts quality
sampler_nameEnumYesNoneName of sampling algorithm, affects generation speed, style and quality
schedulerEnumYesNoneScheduler that controls the noise removal process
positiveCONDITIONINGYesNonePositive conditions describing desired image content
negativeCONDITIONINGYesNoneNegative conditions describing content to exclude
latent_imageLATENTYesNoneLatent image to denoise, usually noise or output from previous step
denoiseFLOATYes1.0Denoising strength - 1.0 for full denoising, lower values preserve original structure, suitable for image-to-image

Output Parameters

OutputTypeDescription
samplesLATENTDenoised latent image that can be decoded to final image

Usage Examples

Stable diffusion 1.5 Text-to-Image Workflow Example

Stable diffusion 1.5 Text-to-Image Workflow Example

Stable diffusion 1.5 Image-to-Image Workflow Example

Stable diffusion 1.5 Image-to-Image Workflow Example

Source Code

[Updated on May 15, 2025]


def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
    latent_image = latent["samples"]
    latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)

    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)

    noise_mask = None
    if "noise_mask" in latent:
        noise_mask = latent["noise_mask"]

    callback = latent_preview.prepare_callback(model, steps)
    disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
    out = latent.copy()
    out["samples"] = samples
    return (out, )


class KSampler:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("MODEL", {"tooltip": "The model used for denoising the input latent."}),
                "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}),
                "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "The number of steps used in the denoising process."}),
                "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "tooltip": "The Classifier-Free Guidance scale balances creativity and adherence to the prompt. Higher values result in images more closely matching the prompt however too high values will negatively impact quality."}),
                "sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "The algorithm used when sampling, this can affect the quality, speed, and style of the generated output."}),
                "scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"tooltip": "The scheduler controls how noise is gradually removed to form the image."}),
                "positive": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to include in the image."}),
                "negative": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to exclude from the image."}),
                "latent_image": ("LATENT", {"tooltip": "The latent image to denoise."}),
                "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of denoising applied, lower values will maintain the structure of the initial image allowing for image to image sampling."}),
            }
        }

    RETURN_TYPES = ("LATENT",)
    OUTPUT_TOOLTIPS = ("The denoised latent.",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
    DESCRIPTION = "Uses the provided model, positive and negative conditioning to denoise the latent image."

    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)