Ksampler - ComfyUI Built-in Node Documentation
The Ksampler node is a commonly used sampling node in ComfyUI.
The KSampler node performs multi-step denoising sampling on latent images. It combines positive and negative conditions (prompts) and uses specified sampling algorithms and schedulers to generate high-quality latent images. It is commonly used in AI image generation workflows like text-to-image and image-to-image.
Parameter Description
Input Parameters
Parameter | Type | Required | Default | Description |
---|---|---|---|---|
model | MODEL | Yes | None | Model used for denoising (e.g. Stable Diffusion model) |
seed | INT | Yes | 0 | Random seed to ensure reproducible results |
steps | INT | Yes | 20 | Number of denoising steps - more steps mean finer details but slower generation |
cfg | FLOAT | Yes | 8.0 | Classifier-Free Guidance scale - higher values better match prompts but too high impacts quality |
sampler_name | Enum | Yes | None | Name of sampling algorithm, affects generation speed, style and quality |
scheduler | Enum | Yes | None | Scheduler that controls the noise removal process |
positive | CONDITIONING | Yes | None | Positive conditions describing desired image content |
negative | CONDITIONING | Yes | None | Negative conditions describing content to exclude |
latent_image | LATENT | Yes | None | Latent image to denoise, usually noise or output from previous step |
denoise | FLOAT | Yes | 1.0 | Denoising strength - 1.0 for full denoising, lower values preserve original structure, suitable for image-to-image |
Output Parameters
Output | Type | Description |
---|---|---|
samples | LATENT | Denoised latent image that can be decoded to final image |
Usage Examples
Stable diffusion 1.5 Text-to-Image Workflow Example
Stable diffusion 1.5 Text-to-Image Workflow Example
Stable diffusion 1.5 Image-to-Image Workflow Example
Stable diffusion 1.5 Image-to-Image Workflow Example
Source Code
[Updated on May 15, 2025]