Skip to main content

Overview

The ComfyUI V3 schema introduces a more organized way of defining nodes, and future extensions to node features will only be added to V3 schema. You can use this guide to help you migrate your existing V1 nodes to the new V3 schema.

Core Concepts

The V3 schema is kept on the new versioned Comfy API, meaning future revisions to the schema will be backwards compatible. comfy_api.latest will point to the latest numbered API that is still under development; the version before latest is what can be considered ‘stable’. Version v0_0_2 is the current (and first) API version so more changes will be made to it without warning. Once it is considered stable, a new version v0_0_3 will be created for latest to point at.
# use latest ComfyUI API
from comfy_api.latest import ComfyExtension, io, ui

# use a specific version of ComfyUI API
from comfy_api.v0_0_2 import ComfyExtension, io, ui

V1 vs V3 Architecture

The biggest changes in V3 schema are:
  • Inputs and Outputs defined by objects instead of a dictionary.
  • The execution method is fixed to the name ‘execute’ and is a class method.
  • def comfy_entrypoint() function that returns a ComfyExtension object defines exposed nodes instead of NODE_CLASS_MAPPINGS/NODE_DISPLAY_NAME_MAPPINGS
  • Node objects do not expose ‘state’ - def __init__(self) will have no effect on what is exposed in the node’s functions, as all of them are class methods. The node class is sanitized before execution as well.

V1 (Legacy)

class MyNode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {...}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"
    CATEGORY = "my_category"

    def execute(self, ...):
        return (result,)

NODE_CLASS_MAPPINGS = {"MyNode": MyNode}

V3 (Modern)

from comfy_api.latest import ComfyExtension, io

class MyNode(io.ComfyNode):
    @classmethod
    def define_schema(cls) -> io.Schema:
        return io.Schema(
            node_id="MyNode",
            display_name="My Node",
            category="my_category",
            inputs=[...],
            outputs=[...]
        )

    @classmethod
    def execute(cls, ...) -> io.NodeOutput:
        return io.NodeOutput(result)

class MyExtension(ComfyExtension):
    async def get_node_list(self) -> list[type[io.ComfyNode]]:
        return [MyNode]

async def comfy_entrypoint() -> ComfyExtension:
    return MyExtension()

Migration Steps

Going from V1 to V3 should be simple in most cases and is simply a syntax change.

Step 1: Change Base Class

All V3 Schema nodes should inherit from ComfyNode. Multiple layers of inheritance are okay as long as at the top of the chain there is a ComfyNode parent. V1:
class Example:
    def __init__(self):
        pass
V3:
from comfy_api.latest import io

class Example(io.ComfyNode):
    # No __init__ needed

Step 2: Convert INPUT_TYPES to define_schema

Node properties like node id, display name, category, etc. that were assigned in different places in code such as dictionaries and class properties are now kept together via the Schema class. The define_schema(cls) function is expected to return a Schema object in much the same way INPUT_TYPES(s) worked in V1. Supported core Input/Output types are stored and documented in comfy_api/{version} in _io.py, which is namespaced as io by default. Since Inputs/Outputs are defined by classes now instead of dictionaries or strings, custom types are supported by either defining your own class or using the helper function Custom in io. Custom types are elaborated on in a section further below. A type class has the following properties:
  • class Input for Inputs (i.e. Model.Input(...))
  • class Output for Outputs (i.e. Model.Output(...)). Note that all types may not support being an output.
  • Type for getting a typehint of the type (i.e. Model.Type). Note that some typehints are just any, which may be updated in the future. These typehints are not enforced and just act as useful documentation.
V1:
@classmethod
def INPUT_TYPES(s):
    return {
        "required": {
            "image": ("IMAGE",),
            "int_field": ("INT", {
                "default": 0,
                "min": 0,
                "max": 4096,
                "step": 64,
                "display": "number"
            }),
            "string_field": ("STRING", {
                "multiline": False,
                "default": "Hello"
            }),
            # V1 handling of arbitrary types
            "custom_field": ("MY_CUSTOM_TYPE",),
        },
        "optional": {
            "mask": ("MASK",)
        }
    }
V3:
@classmethod
def define_schema(cls) -> io.Schema:
    return io.Schema(
        node_id="Example",
        display_name="Example Node",
        category="examples",
        description="Node description here",
        inputs=[
            io.Image.Input("image"),
            io.Int.Input("int_field",
                default=0,
                min=0,
                max=4096,
                step=64,
                display_mode=io.NumberDisplay.number
            ),
            io.String.Input("string_field",
                default="Hello",
                multiline=False
            ),
            # V3 handling of arbitrary types
            io.Custom("my_custom_type").Input("custom_input"),
            io.Mask.Input("mask", optional=True)
        ],
        outputs=[
            io.Image.Output()
        ]
    )

Step 3: Update Execute Method

All execution functions in v3 are named execute and are class methods. V1:
def test(self, image, string_field, int_field):
    # Process
    image = 1.0 - image
    return (image,)
V3:
@classmethod
def execute(cls, image, string_field, int_field) -> io.NodeOutput:
    # Process
    image = 1.0 - image

    # Return with optional UI preview
    return io.NodeOutput(image, ui=ui.PreviewImage(image, cls=cls))

Step 4: Convert Node Properties

Here are some examples of property names; see the source code in comfy_api.latest._io for more details.
V1 PropertyV3 Schema FieldNotes
RETURN_TYPESoutputs in SchemaList of Output objects
RETURN_NAMESdisplay_name in OutputPer-output display names
FUNCTIONAlways executeMethod name is standardized
CATEGORYcategory in SchemaString value
OUTPUT_NODEis_output_node in SchemaBoolean flag
DEPRECATEDis_deprecated in SchemaBoolean flag
EXPERIMENTALis_experimental in SchemaBoolean flag

Step 5: Handle Special Methods

The same special methods are supported as in v1, but either lowercased or renamed entirely to be more clear. Their usage remains the same.

Validation (V1 → V3)

The input validation function was renamed to validate_inputs. V1:
@classmethod
def VALIDATE_INPUTS(s, **kwargs):
    # Validation logic
    return True
V3:
@classmethod
def validate_inputs(cls, **kwargs) -> bool | str:
    # Return True if valid, error string if not
    if error_condition:
        return "Error message"
    return True

Lazy Evaluation (V1 → V3)

The check_lazy_status function is class method, remains the same otherwise. V1:
def check_lazy_status(self, image, string_field, ...):
    if condition:
        return ["string_field"]
    return []
V3:
@classmethod
def check_lazy_status(cls, image, string_field, ...):
    if condition:
        return ["string_field"]
    return []

Cache Control (V1 → V3)

The functionality of cache control remains the same as in V1, but the original name was very misleading as to how it operated. V1’s IS_CHANGED function signals execution not to trigger rerunning the node if the return value is the SAME as the last time the node was ran. Thus, the function IS_CHANGED was renamed to fingerprint_inputs. One of the most common mistakes by developers was thinking if you return True, the node would always re-run. Because True would always be returned, it would have the opposite effect of only making the node run once and reuse cached values. An example of using this function is the LoadImage node. It returns the hash of the selected file, so that if the file changes, the node will be forced to rerun. V1:
@classmethod
def IS_CHANGED(s, **kwargs):
    return "unique_value"
V3:
@classmethod
def fingerprint_inputs(cls, **kwargs):
    return "unique_value"

Step 6: Create Extension and Entry Point

Instead of defining dictionaries to link node id to node class/display name, there is now a ComfyExtension class and an expected comfy_entrypoint function to be defined. In the future, more functions may be added to ComfyExtension to register more than just nodes via get_node_list. comfy_entrypoint can be either async or not, but get_node_list must be defined as async. V1:
NODE_CLASS_MAPPINGS = {
    "Example": Example
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "Example": "Example Node"
}
V3:
from comfy_api.latest import ComfyExtension

class MyExtension(ComfyExtension):
    # must be declared as async
    async def get_node_list(self) -> list[type[io.ComfyNode]]:
        return [
            Example,
            # Add more nodes here
        ]

# can be declared async or not, both will work
async def comfy_entrypoint() -> MyExtension:
    return MyExtension()

Input Type Reference

Already explained in step 2, but here are some type reference comparisons in V1 vs V3. See comfy_api.latest._io for the full type declarations.

Basic Types

V1 TypeV3 TypeExample
"INT"io.Int.Input()io.Int.Input("count", default=1, min=0, max=100)
"FLOAT"io.Float.Input()io.Float.Input("strength", default=1.0, min=0.0, max=10.0)
"STRING"io.String.Input()io.String.Input("text", multiline=True)
"BOOLEAN"io.Boolean.Input()io.Boolean.Input("enabled", default=True)

control_after_generate

Int and Combo inputs support a control_after_generate parameter that adds a control widget for automatically changing the value after each generation. In V1 this was a plain bool; in V3 you can use the io.ControlAfterGenerate enum for explicit control. Passing True is equivalent to io.ControlAfterGenerate.randomize.
ValueBehavior
io.ControlAfterGenerate.fixedValue stays the same after each generation.
io.ControlAfterGenerate.incrementValue increments by the step after each generation.
io.ControlAfterGenerate.decrementValue decrements by the step after each generation.
io.ControlAfterGenerate.randomizeValue is randomized after each generation.
# Enable the control widget (user picks the mode in the UI)
io.Int.Input("seed", default=0, min=0, max=0xFFFFFFFFFFFFFFFF, control_after_generate=True)

# Set a specific default mode
io.Int.Input("seed", default=0, min=0, max=0xFFFFFFFFFFFFFFFF,
    control_after_generate=io.ControlAfterGenerate.randomize)

ComfyUI Types

V1 TypeV3 TypeExample
"IMAGE"io.Image.Input()io.Image.Input("image", tooltip="Input image")
"MASK"io.Mask.Input()io.Mask.Input("mask", optional=True)
"LATENT"io.Latent.Input()io.Latent.Input("latent")
"CONDITIONING"io.Conditioning.Input()io.Conditioning.Input("positive")
"MODEL"io.Model.Input()io.Model.Input("model")
"VAE"io.VAE.Input()io.VAE.Input("vae")
"CLIP"io.CLIP.Input()io.CLIP.Input("clip")

Combo (Dropdowns/Selection Lists)

Combo types in V3 require explicit class definition. V1:
"mode": (["option1", "option2", "option3"],)
V3:
io.Combo.Input("mode", options=["option1", "option2", "option3"])

Schema Reference

The Schema dataclass defines all properties of a V3 node. Here is a complete reference of all available fields:
FieldTypeDefaultDescription
node_idstrrequiredGlobally unique ID of the node. Custom nodes should add a prefix/postfix to avoid clashes.
display_namestrNoneDisplay name shown in the UI. Falls back to node_id if not set.
categorystr"sd"Category in the “Add Node” menu (e.g. "image/transform").
descriptionstr""Tooltip shown when hovering over the node.
inputslist[Input][]List of input definitions.
outputslist[Output][]List of output definitions.
hiddenlist[Hidden][]List of hidden inputs to request (see Hidden Inputs).
search_aliaseslist[str][]Alternative names for search. Useful for synonyms or old names after renaming.
is_output_nodeboolFalseMarks the node as an output node, causing it and its dependencies to be executed.
is_input_listboolFalseWhen True, all inputs become list[type] regardless of how many items are passed in.
is_deprecatedboolFalseFlags the node as deprecated, signaling users to find alternatives.
is_experimentalboolFalseFlags the node as experimental, warning users it may change.
is_dev_onlyboolFalseHides the node from search/menus unless dev mode is enabled.
is_api_nodeboolFalseFlags the node as an API node for Comfy API services.
not_idempotentboolFalseWhen True, the node will always re-run and never reuse cached outputs from a different identical node in the graph.
enable_expandboolFalseAllows NodeOutput to include an expand property for node expansion.
accept_all_inputsboolFalseWhen True, all inputs from the prompt are passed as kwargs, even if not defined in the schema.

Common Input Parameters

All input types share these base parameters:
ParameterTypeDefaultDescription
idstrrequiredUnique identifier for the input, used as the kwarg name in execute.
display_namestrNoneLabel shown in the UI. Defaults to id.
optionalboolFalseWhether the input is optional.
tooltipstrNoneHover tooltip text.
lazyboolNoneMarks input for lazy evaluation (see Lazy Evaluation).
raw_linkboolNoneWhen True, passes the raw link info instead of the resolved value.
advancedboolNoneWhen True, the input is hidden behind an “Advanced” toggle in the UI.
Widget inputs (Int, Float, String, Boolean, Combo) additionally support:
ParameterTypeDefaultDescription
defaultvariesNoneDefault value for the widget.
socketlessboolNoneWhen True, hides the input socket (widget only, no incoming connections).
force_inputboolNoneWhen True, forces the widget to display as a socket input instead.

Advanced Features

Hidden Inputs

Hidden inputs provide access to execution context like the prompt metadata, node ID, and other internal values. They are not visible in the UI. In V1, hidden inputs were declared as a "hidden" key in INPUT_TYPES. In V3, they are declared via the hidden parameter on the Schema, and their values are accessed via cls.hidden. V1:
@classmethod
def INPUT_TYPES(s):
    return {
        "required": {...},
        "hidden": {
            "unique_id": "UNIQUE_ID",
            "prompt": "PROMPT",
            "extra_pnginfo": "EXTRA_PNGINFO",
        }
    }

def execute(self, unique_id, prompt, extra_pnginfo, ...):
    # hidden values passed as regular arguments
    print(unique_id)
V3:
@classmethod
def define_schema(cls) -> io.Schema:
    return io.Schema(
        node_id="MyNode",
        inputs=[...],
        hidden=[io.Hidden.unique_id, io.Hidden.prompt, io.Hidden.extra_pnginfo],
    )

@classmethod
def execute(cls, ...) -> io.NodeOutput:
    # hidden values accessed via cls.hidden
    print(cls.hidden.unique_id)
    print(cls.hidden.prompt)
    print(cls.hidden.extra_pnginfo)
Available hidden values:
Hidden EnumDescription
io.Hidden.unique_idThe unique identifier of the node, matching the id on the client side.
io.Hidden.promptThe complete prompt sent by the client.
io.Hidden.extra_pnginfoDictionary copied into metadata of saved .png files.
io.Hidden.dynpromptInstance of DynamicPrompt that may mutate during execution.
io.Hidden.auth_token_comfy_orgToken acquired from signing into a ComfyOrg account on the frontend.
io.Hidden.api_key_comfy_orgAPI key generated by ComfyOrg, allows skipping frontend sign-in.
Some hidden values are automatically added based on Schema flags. Output nodes (is_output_node=True) automatically receive prompt and extra_pnginfo. API nodes (is_api_node=True) automatically receive auth tokens.

UI Helpers

V3 provides built-in UI helpers in the ui module to handle common patterns like previewing and saving files. Pass them to io.NodeOutput via the ui parameter.

Preview Helpers

Preview helpers save temporary files and return UI data for in-node display.
from comfy_api.latest import ui

# Preview an image in the node
return io.NodeOutput(images, ui=ui.PreviewImage(images, cls=cls))

# Preview a mask (automatically converts to 3-channel for display)
return io.NodeOutput(mask, ui=ui.PreviewMask(mask, cls=cls))

# Preview audio
return io.NodeOutput(audio, ui=ui.PreviewAudio(audio, cls=cls))

# Preview text
return io.NodeOutput(ui=ui.PreviewText("Some text value"))

# Preview 3D model
return io.NodeOutput(ui=ui.PreviewUI3D(model_file, camera_info))

Save Helpers

Save helpers provide methods for saving files to the output directory with proper metadata embedding. They are typically used in output nodes.
from comfy_api.latest import ui, io

# Save images and return UI data (most common pattern)
return io.NodeOutput(
    ui=ui.ImageSaveHelper.get_save_images_ui(
        images=images,
        filename_prefix=filename_prefix,
        cls=cls,  # passes hidden prompt/extra_pnginfo for metadata
    )
)

# Save animated PNG
return io.NodeOutput(
    ui=ui.ImageSaveHelper.get_save_animated_png_ui(
        images=images,
        filename_prefix=filename_prefix,
        cls=cls,
        fps=6.0,
        compress_level=4,
    )
)

# Save animated WebP
return io.NodeOutput(
    ui=ui.ImageSaveHelper.get_save_animated_webp_ui(
        images=images,
        filename_prefix=filename_prefix,
        cls=cls,
        fps=6.0,
        lossless=True,
        quality=80,
        method=4,
    )
)

# Save audio (supports flac, mp3, opus)
return io.NodeOutput(
    ui=ui.AudioSaveHelper.get_save_audio_ui(
        audio=audio,
        filename_prefix=filename_prefix,
        cls=cls,
        format="flac",
    )
)
Passing cls=cls to save/preview helpers allows them to automatically embed workflow metadata (prompt, extra_pnginfo) in the saved files. Make sure to include io.Hidden.prompt and io.Hidden.extra_pnginfo in your schema’s hidden list, or set is_output_node=True which adds them automatically.

Returning Raw UI Dicts

If you need to return UI data that doesn’t have a helper, you can pass a dict directly:
return io.NodeOutput(ui={"images": results})

Output Nodes

For nodes that produce side effects (like saving files). Same as in V1, marking a node as output will display a run play button in the node’s context window, allowing for partial execution of the graph.
@classmethod
def define_schema(cls) -> io.Schema:
    return io.Schema(
        node_id="SaveNode",
        inputs=[...],
        outputs=[],  # Does not need to be empty.
        is_output_node=True  # Mark as output node
    )

Custom Types

Create custom input/output types either via class definition or the Custom helper function.
from comfy_api.latest import io

# Method 1: Using decorator with class
@io.comfytype(io_type="MY_CUSTOM_TYPE")
class MyCustomType:
    Type = torch.Tensor  # Python type hint

    class Input(io.Input):
        def __init__(self, id: str, **kwargs):
            super().__init__(id, **kwargs)

    class Output(io.Output):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

# Method 2: Using Custom helper
# The helper can be used directly without saving to a variable first for convenience as well
MyCustomType = io.Custom("MY_CUSTOM_TYPE")

MultiType Inputs

MultiType allows an input to accept more than one type. This is useful when a node can operate on different data types through the same input slot. If the first argument (id) is an instance of an Input class instead of a string, that input will be used to create a widget with its overridden values. Otherwise, the input is socket-only.
# Socket-only multi-type input (no widget)
io.MultiType.Input("input", types=[io.Image, io.Mask])

# Multi-type input with a widget fallback (String widget shown when nothing is connected)
io.MultiType.Input(
    io.String.Input("model_file", default="", multiline=False),
    types=[io.File3DGLB, io.File3DGLTF, io.File3DOBJ],
    tooltip="3D model file or path string",
)

MatchType (Generic Type Matching)

MatchType creates type-linked inputs and outputs. When a user connects a specific type to a MatchType input, all other inputs and outputs sharing the same template automatically constrain to that type. This is how nodes like Switch and Create List work with any type.
@classmethod
def define_schema(cls):
    # Create a template - all inputs/outputs sharing the same template will match types
    template = io.MatchType.Template("switch")
    return io.Schema(
        node_id="SwitchNode",
        display_name="Switch",
        category="logic",
        inputs=[
            io.Boolean.Input("switch"),
            io.MatchType.Input("on_false", template=template, lazy=True),
            io.MatchType.Input("on_true", template=template, lazy=True),
        ],
        outputs=[
            io.MatchType.Output(template=template, display_name="output"),
        ],
    )
You can also restrict which types are allowed:
# Only allow Image, Mask, or Latent types
template = io.MatchType.Template("input_type", allowed_types=[io.Image, io.Mask, io.Latent])

Dynamic Inputs

V3 introduces dynamic input types that change the available inputs based on user interaction. There is no V1 equivalent for these features.

Autogrow

Autogrow creates a variable number of inputs that automatically grow as the user connects more. There are two template types: TemplatePrefix generates inputs with a numbered prefix (e.g. image0, image1, image2…):
@classmethod
def define_schema(cls):
    autogrow_template = io.Autogrow.TemplatePrefix(
        input=io.Image.Input("image"),  # template for each input
        prefix="image",                  # prefix for generated input names
        min=2,                           # minimum number of inputs shown
        max=50,                          # maximum number of inputs allowed
    )
    return io.Schema(
        node_id="BatchImagesNode",
        display_name="Batch Images",
        category="image",
        inputs=[io.Autogrow.Input("images", template=autogrow_template)],
        outputs=[io.Image.Output()],
    )

@classmethod
def execute(cls, images: io.Autogrow.Type) -> io.NodeOutput:
    # 'images' is a dict mapping input names to their values
    image_list = list(images.values())
    return io.NodeOutput(batch(image_list))
TemplateNames generates inputs with specific names:
template = io.Autogrow.TemplateNames(
    input=io.Float.Input("float"),
    names=["x", "y", "z"],  # explicit names for each input
    min=1,                    # minimum number of inputs shown
)
Autogrow can be combined with MatchType to create lists of type-matched inputs:
@classmethod
def define_schema(cls):
    template_matchtype = io.MatchType.Template("type")
    template_autogrow = io.Autogrow.TemplatePrefix(
        input=io.MatchType.Input("input", template=template_matchtype),
        prefix="input",
    )
    return io.Schema(
        node_id="CreateList",
        display_name="Create List",
        category="logic",
        is_input_list=True,
        inputs=[io.Autogrow.Input("inputs", template=template_autogrow)],
        outputs=[
            io.MatchType.Output(
                template=template_matchtype,
                is_output_list=True,
                display_name="list",
            ),
        ],
    )

DynamicCombo

DynamicCombo creates a dropdown that shows/hides different inputs depending on the selected option. This is useful for nodes where different modes require different parameters.
@classmethod
def define_schema(cls):
    return io.Schema(
        node_id="ResizeNode",
        display_name="Resize",
        category="transform",
        inputs=[
            io.Image.Input("image"),
            io.DynamicCombo.Input("resize_type", options=[
                io.DynamicCombo.Option("scale by dimensions", [
                    io.Int.Input("width", default=512, min=0, max=8192),
                    io.Int.Input("height", default=512, min=0, max=8192),
                ]),
                io.DynamicCombo.Option("scale by multiplier", [
                    io.Float.Input("multiplier", default=1.0, min=0.01, max=8.0),
                ]),
                io.DynamicCombo.Option("scale to megapixels", [
                    io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0),
                ]),
            ]),
        ],
        outputs=[io.Image.Output()],
    )

@classmethod
def execute(cls, image, resize_type: dict) -> io.NodeOutput:
    # resize_type is a dict containing the selected option key and its inputs
    selected = resize_type["resize_type"]
    if selected == "scale by dimensions":
        width = resize_type["width"]
        height = resize_type["height"]
        # ...
    elif selected == "scale by multiplier":
        multiplier = resize_type["multiplier"]
        # ...
DynamicCombo options can also be nested:
io.DynamicCombo.Input("combo", options=[
    io.DynamicCombo.Option("option1", [io.String.Input("string")]),
    io.DynamicCombo.Option("option2", [
        io.DynamicCombo.Input("subcombo", options=[
            io.DynamicCombo.Option("sub_opt1", [io.Float.Input("x"), io.Float.Input("y")]),
            io.DynamicCombo.Option("sub_opt2", [io.Mask.Input("mask", optional=True)]),
        ])
    ]),
])

Async Execute

V3 supports async execute methods. This is useful for nodes that perform I/O operations, API calls, or other async work. Simply declare execute as async:
@classmethod
async def execute(cls, prompt, **kwargs) -> io.NodeOutput:
    result = await some_async_operation(prompt)
    return io.NodeOutput(result)

ComfyAPI

The ComfyAPI class provides access to ComfyUI runtime services like progress reporting and node replacement registration. Import it and create an instance:
from comfy_api.latest import ComfyAPI

api = ComfyAPI()

Progress Reporting

Report execution progress from within a node’s execute method. The progress bar is displayed in the ComfyUI interface. This replaces the V1 pattern of using comfy.utils.PROGRESS_BAR_HOOK.
from comfy_api.latest import ComfyAPI

api = ComfyAPI()

@classmethod
async def execute(cls, images, **kwargs) -> io.NodeOutput:
    total = len(images)
    for i, image in enumerate(images):
        process(image)
        await api.execution.set_progress(
            value=i + 1,
            max_value=total,
            preview_image=image,  # optional: show preview during progress
        )
    return io.NodeOutput(result)
set_progress can accept a PIL Image, an ImageInput tensor, or None for the preview_image parameter. When called from within execute, the node_id is automatically determined from the executing context.

Node Replacement

Node replacement allows mapping old/deprecated nodes to new ones, so existing workflows automatically upgrade. Register replacements using the ComfyAPI in your extension’s on_load method.
from comfy_api.latest import ComfyAPI, ComfyExtension, io

api = ComfyAPI()

class MyExtension(ComfyExtension):
    async def on_load(self) -> None:
        await api.node_replacement.register(io.NodeReplace(
            new_node_id="MyNewNode",
            old_node_id="MyOldNode",
            old_widget_ids=["param1", "param2"],  # ordered widget IDs for positional mapping
            input_mapping=[
                {"new_id": "image", "old_id": "input_image"},       # rename input
                {"new_id": "method", "set_value": "lanczos"},       # set a fixed value
            ],
            output_mapping=[
                {"new_idx": 0, "old_idx": 0},  # map output by index
            ],
        ))

    async def get_node_list(self) -> list[type[io.ComfyNode]]:
        return [MyNewNode]
The old_widget_ids parameter is important: workflow JSON stores widget values by position index, not by name. This list maps those positional indexes to input IDs so the replacement system can correctly identify widget values during migration. For nodes using dynamic inputs (like Autogrow), use dotted paths in the mapping:
input_mapping=[
    {"new_id": "images.image0", "old_id": "image1"},
    {"new_id": "images.image1", "old_id": "image2"},
]

Extension Lifecycle

The ComfyExtension class supports lifecycle hooks beyond just get_node_list:
from comfy_api.latest import ComfyExtension, io

class MyExtension(ComfyExtension):
    async def on_load(self) -> None:
        """Called when the extension is loaded.
        Use for one-time initialization: registering node replacements,
        setting up global resources, etc.
        """
        pass

    async def get_node_list(self) -> list[type[io.ComfyNode]]:
        """Return the list of node classes this extension provides."""
        return [MyNode]

async def comfy_entrypoint() -> MyExtension:
    return MyExtension()

NodeOutput

The NodeOutput class is the standardized return value from execute. It supports several patterns:
# Return a single output value
return io.NodeOutput(image)

# Return multiple output values (order matches outputs list in schema)
return io.NodeOutput(width, height, batch_size)

# Return only UI data (no output values)
return io.NodeOutput(ui=ui.PreviewImage(images, cls=cls))

# Return both output values and UI data
return io.NodeOutput(image, ui=ui.PreviewImage(image, cls=cls))

# Return None/empty (for nodes with no outputs)
return io.NodeOutput()

Complete Example

Here is a complete example of a V3 extension file with multiple nodes:
from comfy_api.latest import ComfyExtension, io, ui

class InvertImage(io.ComfyNode):
    @classmethod
    def define_schema(cls):
        return io.Schema(
            node_id="MyPack_InvertImage",  # prefixed to avoid clashes
            display_name="Invert Image",
            category="my_pack/image",
            description="Inverts the colors of an image.",
            inputs=[
                io.Image.Input("image"),
            ],
            outputs=[
                io.Image.Output(display_name="inverted"),
            ],
        )

    @classmethod
    def execute(cls, image) -> io.NodeOutput:
        inverted = 1.0 - image
        return io.NodeOutput(inverted, ui=ui.PreviewImage(inverted, cls=cls))


class SaveImage(io.ComfyNode):
    @classmethod
    def define_schema(cls):
        return io.Schema(
            node_id="MyPack_SaveImage",
            display_name="Save Image",
            category="my_pack/image",
            is_output_node=True,
            inputs=[
                io.Image.Input("images"),
                io.String.Input("filename_prefix", default="ComfyUI"),
            ],
            outputs=[],
        )

    @classmethod
    def execute(cls, images, filename_prefix) -> io.NodeOutput:
        return io.NodeOutput(
            ui=ui.ImageSaveHelper.get_save_images_ui(
                images=images,
                filename_prefix=filename_prefix,
                cls=cls,
            )
        )


class MyPackExtension(ComfyExtension):
    async def get_node_list(self) -> list[type[io.ComfyNode]]:
        return [InvertImage, SaveImage]

async def comfy_entrypoint() -> MyPackExtension:
    return MyPackExtension()