Experimental API: This API is experimental and subject to change. Endpoints, request/response formats, and behavior may be modified without notice.
Comfy Cloud API
The Comfy Cloud API provides programmatic access to run workflows on Comfy Cloud infrastructure. The API is compatible with local ComfyUI’s API, making it easy to migrate existing integrations.
Subscription Required: Running workflows via the API requires an active Comfy Cloud subscription. See pricing plans for details.
Base URL
Authentication
All API requests require an API key passed via the X-API-Key header.
Getting an API Key
Visit https://platform.comfy.org/login and Log In
Click `+ New` in API Keys to Create an API Key
Click + New in API Keys to create an API Key
Enter API Key Name

- (Required) Enter the API Key name,
- Click
Generate to create
Save the Obtained API Key

Since the API Key is only visible upon first creation, please save it immediately after creation. It cannot be viewed later, so please keep it safe.
Please note that you should not share your API Key with others. Once it leaked, you can delete it and create a new one.
Keep your API key secure. Never commit it to version control or share it publicly.
Using the API Key
Pass your API key in the X-API-Key header with every request:
curl -X GET "https://cloud.comfy.org/api/user" \
-H "X-API-Key: $COMFY_CLOUD_API_KEY"
Core Concepts
Workflows
ComfyUI workflows are JSON objects describing a graph of nodes. The API accepts workflows in the “API format” (node IDs as keys with class_type, inputs, etc.) as produced by the ComfyUI frontend’s “Save (API Format)” option.
Jobs
When you submit a workflow, a job is created. Jobs are executed asynchronously:
- Submit workflow via
POST /api/prompt
- Receive a
prompt_id (job ID)
- Monitor progress via WebSocket or poll for status
- Retrieve outputs when complete
Outputs
Generated content (images, videos, audio) is stored in cloud storage. Output files can be downloaded via the /api/view endpoint, which returns a 302 redirect to a temporary signed URL.
Quick Start
Here’s a complete example showing how to submit a workflow, monitor its progress, and retrieve outputs:
Step 1: Submit a Workflow
curl -X POST "https://cloud.comfy.org/api/prompt" \
-H "X-API-Key: $COMFY_CLOUD_API_KEY" \
-H "Content-Type: application/json" \
-d '{"prompt": '"$(cat workflow_api.json)"'}'
Step 2: Monitor Job Progress
You can monitor job completion using either polling or WebSocket for real-time updates.
Option A: Polling (Simple)
Job Status Values:
The API returns one of the following status values:
| Status | Description |
|---|
pending | Job is queued and waiting to start |
in_progress | Job is currently executing |
completed | Job finished successfully |
failed | Job encountered an error |
cancelled | Job was cancelled by user |
# Poll for job completion
curl -X GET "$BASE_URL/api/job/{prompt_id}/status" \
-H "X-API-Key: $COMFY_CLOUD_API_KEY"
# Response examples:
# {"status": "pending"} - Job is queued
# {"status": "in_progress"} - Job is currently running
# {"status": "completed"} - Job finished successfully
# {"status": "failed"} - Job encountered an error
# {"status": "cancelled"} - Job was cancelled
Option B: WebSocket (Real-time Progress)
For real-time progress updates and to collect output metadata:
async function listenForCompletion(
promptId: string,
timeout: number = 300000
): Promise<Record<string, any>> {
const wsUrl = `wss://cloud.comfy.org/ws?clientId=${crypto.randomUUID()}&token=${API_KEY}`;
const outputs: Record<string, any> = {};
return new Promise((resolve, reject) => {
const ws = new WebSocket(wsUrl);
const timer = setTimeout(() => {
ws.close();
reject(new Error(`Job did not complete within ${timeout / 1000}s`));
}, timeout);
ws.onmessage = (event) => {
const data = JSON.parse(event.data);
const msgType = data.type;
const msgData = data.data ?? {};
// Filter to our job
if (msgData.prompt_id !== promptId) return;
if (msgType === "executing") {
const node = msgData.node;
if (node) {
console.log(`Executing node: ${node}`);
} else {
console.log("Execution complete");
}
} else if (msgType === "progress") {
console.log(`Progress: ${msgData.value}/${msgData.max}`);
} else if (msgType === "executed" && msgData.output) {
outputs[msgData.node] = msgData.output;
} else if (msgType === "execution_success") {
console.log("Job completed successfully!");
clearTimeout(timer);
ws.close();
resolve(outputs);
} else if (msgType === "execution_error") {
const errorMsg = msgData.exception_message ?? "Unknown error";
clearTimeout(timer);
ws.close();
reject(new Error(`Execution error: ${errorMsg}`));
}
};
ws.onerror = (err) => {
clearTimeout(timer);
reject(err);
};
});
}
// Wait for completion and collect outputs
const outputs = await listenForCompletion(promptId);
Step 3: Download Outputs
Once the job completes, download the generated files. The outputs object returned from WebSocket (or available via the history endpoint) contains output data organized by node ID. Each node’s output may contain images, video, or audio arrays with file metadata.
Example outputs structure:
{
"9": {
"images": [
{
"filename": "ComfyUI_00001_.png",
"subfolder": "",
"type": "output"
}
]
}
}
The node ID ("9" in this example) corresponds to the SaveImage or other output nodes in your workflow. You can find these IDs by opening your workflow JSON file and looking for nodes with class_type like SaveImage, VHS_VideoCombine, etc.
# Download a single output file (follow 302 redirect with -L)
curl -L "$BASE_URL/api/view?filename=output.png&subfolder=&type=output" \
-H "X-API-Key: $COMFY_CLOUD_API_KEY" \
-o output.png
The /api/view endpoint returns a 302 redirect to a temporary signed URL. Your HTTP client must follow redirects to download the file.
Complete Example
Here’s a full end-to-end example combining all three steps:
import { readFile, writeFile } from "fs/promises";
const BASE_URL = "https://cloud.comfy.org";
const API_KEY = process.env.COMFY_CLOUD_API_KEY!;
async function main() {
// 1. Load and modify workflow
const workflow = JSON.parse(await readFile("workflow_api.json", "utf-8"));
workflow["3"].inputs.seed = 42;
workflow["6"].inputs.text = "a beautiful sunset";
// 2. Submit workflow
const response = await fetch(`${BASE_URL}/api/prompt`, {
method: "POST",
headers: { "X-API-Key": API_KEY, "Content-Type": "application/json" },
body: JSON.stringify({ prompt: workflow }),
});
const { prompt_id } = await response.json();
console.log(`Job submitted: ${prompt_id}`);
// 3. Poll for completion
while (true) {
const statusRes = await fetch(`${BASE_URL}/api/job/${prompt_id}/status`, {
headers: { "X-API-Key": API_KEY },
});
const { status } = await statusRes.json();
if (status === "completed") break;
if (["failed", "cancelled"].includes(status)) {
throw new Error(`Job ${status}`);
}
await new Promise((resolve) => setTimeout(resolve, 2000));
}
// 4. Get outputs via history endpoint
const historyRes = await fetch(`${BASE_URL}/api/history/${prompt_id}`, {
headers: { "X-API-Key": API_KEY },
});
const history = await historyRes.json();
const outputs = history[prompt_id].outputs;
// 5. Download output files
for (const nodeOutputs of Object.values(outputs)) {
for (const fileInfo of (nodeOutputs as any).images ?? []) {
const params = new URLSearchParams({
filename: fileInfo.filename,
subfolder: fileInfo.subfolder ?? "",
type: "output",
});
const viewRes = await fetch(`${BASE_URL}/api/view?${params}`, {
headers: { "X-API-Key": API_KEY },
redirect: "manual",
});
const signedUrl = viewRes.headers.get("location")!;
const fileRes = await fetch(signedUrl);
await writeFile(`./${fileInfo.filename}`, Buffer.from(await fileRes.arrayBuffer()));
console.log(`Downloaded: ${fileInfo.filename}`);
}
}
}
main();
Available Endpoints
| Category | Description |
|---|
| Workflows | Submit workflows, check status |
| Jobs | Monitor job status and queue |
| Inputs | Upload images, masks, and other inputs |
| Outputs | Download generated content |
| WebSocket | Real-time progress updates |
| Object Info | Available nodes and their definitions |
Next Steps
The quick start above covers the basics of submitting workflows and retrieving results. For more advanced use cases, refer to the Cloud API Reference:
- Uploading Input Files - Upload images, masks, or other user-provided content for workflows that require external inputs
- Modifying Workflow Inputs - Dynamically change workflow parameters like prompts, seeds, or node settings before submission
- Using Partner Nodes - Call external AI services (Flux Pro, Ideogram, etc.) that require additional API key configuration
- Queue Management - Monitor queue status, cancel jobs, or interrupt running executions
- Error Handling - Handle HTTP errors, execution failures, and understand exception types
Additional resources: