class LumaImageToVideoGenerationNode(ComfyNodeABC):
"""
Generates videos synchronously based on prompt, input images, and output_size.
"""
RETURN_TYPES = (IO.VIDEO,)
DESCRIPTION = cleandoc(__doc__ or "")
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/video/Luma"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the video generation",
},
),
"model": ([model.value for model in LumaVideoModel],),
"resolution": (
[resolution.value for resolution in LumaVideoOutputResolution],
{
"default": LumaVideoOutputResolution.res_540p,
},
),
"duration": ([dur.value for dur in LumaVideoModelOutputDuration],),
"loop": (
IO.BOOLEAN,
{
"default": False,
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.",
},
),
},
"optional": {
"first_image": (
IO.IMAGE,
{"tooltip": "First frame of generated video."},
),
"last_image": (IO.IMAGE, {"tooltip": "Last frame of generated video."}),
"luma_concepts": (
LumaIO.LUMA_CONCEPTS,
{
"tooltip": "Optional Camera Concepts to dictate camera motion via the Luma Concepts node."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(
self,
prompt: str,
model: str,
resolution: str,
duration: str,
loop: bool,
seed,
first_image: torch.Tensor = None,
last_image: torch.Tensor = None,
luma_concepts: LumaConceptChain = None,
auth_token=None,
**kwargs,
):
if first_image is None and last_image is None:
raise Exception(
"At least one of first_image and last_image requires an input."
)
keyframes = self._convert_to_keyframes(first_image, last_image, auth_token)
duration = duration if model != LumaVideoModel.ray_1_6 else None
resolution = resolution if model != LumaVideoModel.ray_1_6 else None
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/luma/generations",
method=HttpMethod.POST,
request_model=LumaGenerationRequest,
response_model=LumaGeneration,
),
request=LumaGenerationRequest(
prompt=prompt,
model=model,
aspect_ratio=LumaAspectRatio.ratio_16_9,
resolution=resolution,
duration=duration,
loop=loop,
keyframes=keyframes,
concepts=luma_concepts.create_api_model() if luma_concepts else None,
),
auth_token=auth_token,
)
response_api: LumaGeneration = operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/luma/generations/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=LumaGeneration,
),
completed_statuses=[LumaState.completed],
failed_statuses=[LumaState.failed],
status_extractor=lambda x: x.state,
auth_token=auth_token,
)
response_poll = operation.execute()
vid_response = requests.get(response_poll.assets.video)
return (VideoFromFile(BytesIO(vid_response.content)),)
def _convert_to_keyframes(
self,
first_image: torch.Tensor = None,
last_image: torch.Tensor = None,
auth_token=None,
):
if first_image is None and last_image is None:
return None
frame0 = None
frame1 = None
if first_image is not None:
download_urls = upload_images_to_comfyapi(
first_image, max_images=1, auth_token=auth_token
)
frame0 = LumaImageReference(type="image", url=download_urls[0])
if last_image is not None:
download_urls = upload_images_to_comfyapi(
last_image, max_images=1, auth_token=auth_token
)
frame1 = LumaImageReference(type="image", url=download_urls[0])
return LumaKeyframes(frame0=frame0, frame1=frame1)